Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Viruses ; 16(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38543785

RESUMO

HIV-1 encodes four accesory proteins in addition to its structural and regulatory genes. Uniquely amongst them, Vpr is abundantly present within virions, meaning it is poised to exert various biological effects on the host cell upon delivery. In this way, Vpr contributes towards the establishment of a successful infection, as evidenced by the extent to which HIV-1 depends on this factor to achieve full pathogenicity in vivo. Although HIV infects various cell types in the host organism, CD4+ T cells are preferentially targeted since they are highly permissive towards productive infection, concomitantly bringing about the hallmark immune dysfunction that accompanies HIV-1 spread. The last several decades have seen unprecedented progress in unraveling the activities Vpr possesses in the host cell at the molecular scale, increasingly underscoring the importance of this viral component. Nevertheless, it remains controversial whether some of these advances bear in vivo relevance, since commonly employed cellular models significantly differ from primary T lymphocytes. One prominent example is the "established" ability of Vpr to induce G2 cell cycle arrest, with enigmatic physiological relevance in infected primary T lymphocytes. The objective of this review is to present these discoveries in their biological context to illustrate the mechanisms whereby Vpr supports HIV-1 infection in CD4+ T cells, whilst identifying findings that require validation in physiologically relevant models.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Linfócitos T/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/genética , Infecções por HIV/metabolismo , Linfócitos T CD4-Positivos/metabolismo
2.
mBio ; 14(1): e0297322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36602307

RESUMO

Gelsolin (GSN) is a structural actin-binding protein that is known to affect actin dynamics in the cell. Using mass spectrometry, we identified GSN as a novel Vpr-interacting protein. Endogenous GSN protein was expressed at detectable levels in monocyte-derived macrophages (MDM) and in THP-1 cells, but it was undetectable at the protein level in other cell lines tested. The HIV-1 infection of MDM was associated with a reduction in GSN steady-state levels, presumably due to the Vpr-induced degradation of GSN. Indeed, the coexpression of GSN and Viral protein R (Vpr) in transiently transfected HEK293T cells resulted in the Vpr-dependent proteasomal degradation of GSN. This effect was observed for Vprs from multiple virus isolates. The overexpression of GSN in HEK293T cells had no effect on Gag expression or particle release, but it reduced the expression and packaging of the HIV-1 envelope (Env) glycoprotein and reduced viral infectivity. An analysis of the HIV-1 splicing patterns did not reveal any GSN-dependent differences, suggesting that the effect of GSN on Env expression was regulated at a posttranscriptional level. Indeed, the treatment of transfected cells with lysosomal inhibitors reversed the effect of GSN on Env stability, suggesting that GSN reduced Env expression via enhanced lysosomal degradation. Our data identify GSN as a macrophage-specific host antiviral factor that reduces the expression of HIV-1 Env. IMPORTANCE Despite dramatic progress in drug therapies, HIV-1 infection remains an incurable disease that affects millions of people worldwide. The virus establishes long-lasting reservoirs that are resistant to currently available drug treatments and allow the virus to rebound whenever drug therapy is interrupted. Macrophages are long-lived cells that are relatively insensitive to HIV-1-induced cytopathicity and thus could contribute to the viral reservoir. Here, we identified a novel host factor, gelsolin, that is expressed at high levels in macrophages and inhibits viral infectivity by modulating the expression of the HIV-1 Env glycoprotein, which is critical in the spread of an HIV-1 infection. Importantly, the viral protein Vpr induces the degradation of gelsolin and thus counteracts its antiviral activity. Our study provides significant and novel insights into HIV-1 virus-host interactions and furthers our understanding of the importance of Vpr in HIV-1 infection and pathogenesis.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Gelsolina/metabolismo , Produtos do Gene env/metabolismo , Células HEK293 , Células Mieloides/metabolismo , Antivirais/metabolismo
3.
Eur J Clin Invest ; 53(5): e13943, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36579370

RESUMO

BACKGROUND: The HIV viral protein R (Vpr) is a multifunction protein involved in the pathophysiology of HIV-1. Recent evidence has suggested that Vpr amino acid substitutions influence the pathophysiology of HIV-1 and clinical outcomes in people living with HIV (PLWH). Several studies have linked Vpr amino acid substitutions to clinical outcomes in PLWH; however, there is no clear consensus as to which amino acids or amino acid substitutions are most important in the pathophysiology and clinical outcomes in PLWH. We, therefore, conducted a systematic review of studies investigating Vpr amino acid substitutions and clinical outcomes in PLWH. METHODS: PubMed, Scopus and Web of Science databases were searched according to PRISMA guidelines using a search protocol designed specifically for this study. RESULTS: A total of 22 studies were included for data extraction, comprising 14 cross-sectional and 8 longitudinal studies. Results indicated that Vpr amino acid substitutions were associated with specific clinical outcomes, including disease progressions, neurological outcomes and treatment status. Studies consistently showed that the Vpr substitution 63T was associated with slower disease progression, whereas 77H and 85P were associated with no significant contribution to disease progression. CONCLUSIONS: Vpr-specific amino acid substitutions may be contributors to clinical outcomes in PLWH, and future studies should consider investigating the Vpr amino acid substitutions highlighted in this review.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Substituição de Aminoácidos , Estudos Transversais , HIV-1/genética , HIV-1/metabolismo , Infecções por HIV/tratamento farmacológico , Progressão da Doença
4.
AIDS Res Hum Retroviruses ; 39(4): 166-175, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36401355

RESUMO

There is increasing evidence that HIV-1 viral protein R (Vpr) plays an important role in the pathogenesis of cognitive impairment. We investigated the relationship between HIV-1 subtype C Vpr sequence variation and HIV-associated neurocognitive impairment as measured by global deficit score (GDS) in treatment-naive individuals. We used different bioinformatic tools and statistical models to correlate vpr variation and cognitive function. We identified a tyrosine at position 45 (45Y) as a signature for neurocognitive impairment and histidine (45H) as a signature in the non-impaired individuals. The presence of signature 45Y was associated by 3.66 times higher GDS, 525 times higher plasma viral load, 15.84 times higher proviral load, and 60% lower absolute CD4-T cell count compared with those without the signature. Additionally, we identified four conserved Vpr fragment sequences, PEDQGPQREPYNEWTLE (5-21), LGQYIY (42-47), TYGDTW (49-54), and PEDQGPQREPYNEW (5-18), that were associated with higher plasma viral load and proviral load. The implication of these findings is that variation of Vpr leads to neurocognitive impairment in HIV infection and worsens the progression of disease in general by promoting the production of provirus, promoting HIV replication and depletion of CD4+ T cells in the periphery.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , HIV-1/metabolismo , Aminoácidos , Carga Viral , Provírus/genética
5.
Curr HIV Res ; 20(4): 309-320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35792120

RESUMO

BACKGROUND: Many HIV-infected individuals have achieved undetectable viral load and increased CD4 T cell counts due to the success of Antiretroviral Therapy (ART). However, HIV persists in resting T cells, monocytes/macrophages and other quiescent cells. Furthermore, the HIV- 1 vpr accessory gene may play an important role in the persistence of HIV in these infected patients. OBJECTIVES: Therefore, we characterized the HIV-1 vpr gene from PBMC DNA of 14 HIV-infected older patients on long-term ART with mostly undetectable viral load and increased CD4 T cell counts. METHODS: Peripheral Blood Mononuclear Cells (PBMC) were isolated from 14 HIV-infected individuals, followed by extraction of genomic DNA, amplification of HIV-1 vpr gene by polymerase chain reaction (PCR), cloning of vpr gene in TOPO vector and characterization of correct size recombinant inserts containing vpr genes. An average of 13 clones were sequenced from each patient, followed by sequence analysis by bioinformatic tools. RESULTS: Phylogenetic analysis of 182 vpr sequences demonstrated that the vpr sequences of each patient were well separated and discriminated from other patients' sequences and formed distinct clusters. The vpr sequences showed a low degree of viral heterogeneity, lower estimates of genetic diversity and about half of the patients' sequences were under positive selection pressure. While the majority of the vpr deduced amino acid sequences from most patients contained intact open reading frames, several sequences, mostly from two patients, had stop codons. Numerous patient-specific and common amino acid motifs were found in deduced vpr sequences. The functional domains required for vpr activity, including virion incorporation, nuclear import of pre-integration complex and cell cycle arrest, were generally conserved in most vpr sequences. Several of the known Cytotoxic T-lymphocytes (CTL) epitopes in vpr showed variation in our patients' sequences. CONCLUSION: In summary, a low degree of genetic variability, conservation of functional domains and variations in CTL epitopes were the features of vpr sequences from the 14 HIV-infected older patients with controlled viremia on long-term ART.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Genes vpr , Leucócitos Mononucleares , Filogenia , Epitopos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
6.
Cell Rep ; 39(2): 110650, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417711

RESUMO

HIV-1 replicates in CD4+ T cells, leading to AIDS. Determining how HIV-1 shapes its niche to create a permissive environment is central to informing efforts to limit pathogenesis, disturb reservoirs, and achieve a cure. A key roadblock in understanding HIV-T cell interactions is the requirement to activate T cells in vitro to make them permissive to infection. This dramatically alters T cell biology and virus-host interactions. Here we show that HIV-1 cell-to-cell spread permits efficient, productive infection of resting memory T cells without prior activation. Strikingly, we find that HIV-1 infection primes resting T cells to gain characteristics of tissue-resident memory T cells (TRM), including upregulating key surface markers and the transcription factor Blimp-1 and inducing a transcriptional program overlapping the core TRM transcriptional signature. This reprogramming is driven by Vpr and requires Vpr packaging into virions and manipulation of STAT5. Thus, HIV-1 reprograms resting T cells, with implications for viral replication and persistence.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Linfócitos T CD4-Positivos/metabolismo , HIV-1/genética , Células T de Memória , Fenótipo , Replicação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
7.
mBio ; 13(2): e0374821, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35384697

RESUMO

Integration site landscapes, clonal dynamics, and latency reversal with or without vpr were compared in HIV-1-infected Jurkat cell populations, and the properties of individual clones were defined. Clones differed in fractions of long terminal repeat (LTR)-active daughter cells, with some clones containing few to no LTR-active cells, while almost all cells were LTR active for others. Clones varied over 4 orders of magnitude in virus release per active cell. Proviruses in largely LTR-active clones were closer to preexisting enhancers and promoters than low-LTR-active clones. Unsurprisingly, major vpr+ clones contained fewer LTR-active cells than vpr- clones, and predominant vpr+ proviruses were farther from enhancers and promoters than those in vpr- pools. Distances to these marks among intact proviruses previously reported for antiretroviral therapy (ART)-suppressed patients revealed that patient integration sites were more similar to those in the vpr+ pool than to vpr- integrants. Complementing vpr-defective proviruses with vpr led to the rapid loss of highly LTR-active clones, indicating that the effect of Vpr on proviral populations occurred after integration. However, major clones in the complemented pool and its vpr- parent population did not differ in burst sizes. When the latency reactivation agents prostratin and JQ1 were applied separately or in combination, vpr+ and vpr- population-wide trends were similar, with dual-treatment enhancement being due in part to reactivated clones that did not respond to either drug applied separately. However, the expression signatures of individual clones differed between populations. These observations highlight how Vpr, exerting selective pressure on proviral epigenetic variation, can shape integration site landscapes, proviral expression patterns, and reactivation properties. IMPORTANCE A bedrock assumption in HIV-1 population modeling is that all active cells release the same amount of virus. However, the findings here revealed that when HIV-infected cells expand into clones, each clone differs in virus production. Reasoning that this variation in expression patterns constituted a population of clones from which differing subsets would prevail under differing environmental conditions, the cytotoxic HIV-1 protein Vpr was introduced, and population dynamics and expression properties were compared in the presence and absence of Vpr. The results showed that whereas most clones produced fairly continuous levels of virus in the absence of Vpr, its presence selected for a distinct subset of clones with properties reminiscent of persistent populations in patients, suggesting the possibility that the interclonal variation in expression patterns observed in culture may contribute to proviral persistence in vivo.


Assuntos
Soropositividade para HIV , HIV-1 , HIV-1/fisiologia , Humanos , Células Jurkat , Provírus/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
8.
Chem Pharm Bull (Tokyo) ; 69(7): 702-705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34193719

RESUMO

A new brominated pyrrolactam stylissaol A (1) together with four known analogues, 2-bromoaldisine, aldisine, spongiacidin D, and Z-hymenialdisine, were isolated from the EtOAc extract of marine sponge Stylissa massa collected in Myanmar. The absolute configuration at C-10 of 1 was determined as R by the electronic circular dichroism (ECD) data. Among the isolated compounds, 2-bromoaldisine showed anti-Viral Protein R (Vpr) activity against TREx-HeLa-Vpr cells with an effective dose of 10 µM and its potency was comparable to that of positive control damnacanthal.


Assuntos
Alcaloides/química , Antivirais/química , Poríferos/química , Alcaloides/isolamento & purificação , Alcaloides/metabolismo , Animais , Antivirais/isolamento & purificação , Antivirais/metabolismo , Dicroísmo Circular , Células HeLa , Humanos , Conformação Molecular , Mianmar , Poríferos/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
9.
mBio ; 12(3): e0136921, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154423

RESUMO

The interactions between a virus and its host are complex but can be broadly categorized as either viral manipulation of cellular functions or cellular responses to infection. These processes begin at the earliest point of contact between virus and cell and frequently result in changes to cellular gene expression, making genome-wide transcriptomics a useful tool to study them. Several previous studies have used transcriptomics to evaluate the cellular responses to human immunodeficiency virus type 1 (HIV-1) infection; however, none have examined events in primary CD4+ T cells during the first 24 h of infection. Here, we analyzed CD4+ T cells at 4.5, 8, 12, 24, and 48 h following infection. We describe global changes to host gene expression commencing at 4.5 h postinfection and evolving over the ensuing time points. We identify upregulation of genes related to innate immunity, cytokine production, and apoptosis and downregulation of those involved in transcription and translation. We further demonstrate that the viral accessory protein Vpr is necessary for almost all gene expression changes seen at 12 h postinfection and the majority of those seen at 48 h. Identifying this new role for Vpr not only provides fresh perspective on its possible function but also adds further insight into the interplay between HIV-1 and its host at the cellular level. IMPORTANCE HIV-1, while now treatable, remains an important human pathogen causing significant morbidity and mortality globally. The virus predominantly infects CD4+ T cells and, if not treated with medication, ultimately causes their depletion, resulting in AIDS and death. Further refining our understanding of the interaction between HIV-1 and these cells has the potential to inform further therapeutic development. Previous studies have used transcriptomics to assess gene expression changes in CD4+ T cells following HIV-1 infection; here, we provide a detailed examination of changes occurring in the first 24 h of infection. Importantly, we define the viral protein Vpr as essential for the changes observed at this early stage. This finding has significance for understanding the role of Vpr in infection and pathogenesis and also for interpreting previous transcriptomic analyses of HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Transcriptoma/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Apoptose , Células Cultivadas , HIV-1/patogenicidade , Humanos , Fatores de Tempo , Replicação Viral
10.
J Virol ; 95(17): e0055421, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34106747

RESUMO

The p12 region of murine leukemia virus (MLV) Gag and the p6 region of HIV-1 Gag contain late domains required for virus budding. Additionally, the accessory protein Vpr is recruited into HIV particles via p6. Mature p12 is essential for early viral replication events, but the role of mature p6 in early replication is unknown. Using a proviral vector in which the gag and pol reading frames are uncoupled, we have performed the first alanine-scanning mutagenesis screens across p6 to probe its importance for early HIV-1 replication and to further understand its interaction with Vpr. The infectivity of our mutants suggests that, unlike p12, p6 is not important for early viral replication. Consistent with this, we observed that p6 is rapidly lost upon target cell entry in time course immunoblot experiments. By analyzing Vpr incorporation into p6 mutant virions, we identified that the 15-FRFG-18 and 41-LXXLF-45 motifs previously identified as putative Vpr-binding sites are important for Vpr recruitment but that the 34-ELY-36 motif also suggested to be a Vpr-binding site is dispensable. Additionally, disrupting Vpr oligomerization together with removing either binding motif in p6 reduced Vpr incorporation ∼25- to 50-fold more than inhibiting Vpr oligomerization alone and ∼10- to 25-fold more than deleting each p6 motif alone, implying that multivalency/avidity is important for the interaction. Interestingly, using immunoblotting and immunofluorescence, we observed that most Vpr is lost concomitantly with p6 during infection but that a small fraction remains associated with the viral capsid for several hours. This has implications for the function of Vpr in early replication. IMPORTANCE The p12 protein of MLV and the p6 protein of HIV-1 are both supplementary Gag cleavage products that carry proline-rich motifs that facilitate virus budding. Importantly, p12 has also been found to be essential for early viral replication events. However, while Vpr, the only accessory protein packaged into HIV-1 virions, is recruited via the p6 region of Gag, the function of both mature p6 and Vpr in early replication is unclear. Here, we have systematically mutated the p6 region of Gag and have studied the effects on HIV infectivity and Vpr packaging. We have also investigated what happens to p6 and Vpr during early infection. We show that, unlike p12, mature p6 is not required for early replication and that most of the mature p6 and the Vpr that it recruits are lost rapidly upon target cell entry. This has implications for the role of Vpr in target cells.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Internalização do Vírus , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Humanos , Multimerização Proteica , Vírion/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
11.
J Virol ; 95(15): e0097120, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011540

RESUMO

HIV-1 encodes several accessory proteins-Nef, Vif, Vpr, and Vpu-whose functions are to modulate the cellular environment to favor immune evasion and viral replication. While Vpr was shown to mediate a G2/M cell cycle arrest and provide a replicative advantage during infection of myeloid cells, the mechanisms underlying these functions remain unclear. In this study, we defined HIV-1 Vpr proximity interaction network using the BioID proximity labeling approach and identified 352 potential Vpr partners/targets, including several complexes, such as the cell cycle-regulatory anaphase-promoting complex/cyclosome (APC/C). Herein, we demonstrate that both the wild type and cell cycle-defective mutants of Vpr induce the degradation of APC1, an essential APC/C scaffolding protein, and show that this activity relies on the recruitment of DCAF1 by Vpr and the presence of a functional proteasome. Vpr forms a complex with APC1, and the APC/C coactivators Cdh1 and Cdc20 are associated with these complexes. Interestingly, we found that Vpr encoded by the prototypic HIV-1 NL4.3 does not interact efficiently with APC1 and is unable to mediate its degradation as a result of a N28S-G41N amino acid substitution. In contrast, we show that APC1 degradation is a conserved feature of several primary Vpr variants from transmitted/founder virus. Functionally, Vpr-mediated APC1 degradation did not impact the ability of the protein to induce a G2 cell cycle arrest during infection of CD4+ T cells or enhance HIV-1 replication in macrophages, suggesting that this conserved activity may be important for other aspects of HIV-1 pathogenesis. IMPORTANCE The function of the Vpr accessory protein during HIV-1 infection remains poorly defined. Several cellular targets of Vpr were previously identified, but their individual degradation does not fully explain the ability of Vpr to impair the cell cycle or promote HIV-1 replication in macrophages. Here, we used the unbiased proximity labeling approach, called BioID, to further define the Vpr proximity interaction network and identified several potentially new Vpr partners/targets. We validated our approach by focusing on a cell cycle master regulator, the APC/C complex, and demonstrated that Vpr mediated the degradation of a critical scaffolding component of APC/C called APC1. Furthermore, we showed that targeting of APC/C by Vpr did not impact the known activity of Vpr. Since degradation of APC1 is a conserved feature of several primary variants of Vpr, it is likely that the interplay between Vpr and APC/C governs other aspects of HIV-1 pathogenesis.


Assuntos
Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Infecções por HIV/patologia , HIV-1/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Replicação Viral/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Células HEK293 , HIV-1/metabolismo , Células HeLa , Humanos , Macrófagos/virologia , Interferência de RNA , RNA Interferente Pequeno/genética , Espectrometria de Massas em Tandem , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
12.
Cell Host Microbe ; 29(5): 792-805.e6, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33811831

RESUMO

Silencing of nuclear DNA is an essential feature of innate immune responses to invading pathogens. Early in infection, unintegrated lentiviral cDNA accumulates in the nucleus yet remains poorly expressed. In HIV-1-like lentiviruses, the Vpr accessory protein enhances unintegrated viral DNA expression, suggesting Vpr antagonizes cellular restriction. We previously showed how Vpr remodels the host proteome, identifying multiple cellular targets. We now screen these using a targeted CRISPR-Cas9 library and identify SMC5-SMC6 complex localization factor 2 (SLF2) as the Vpr target responsible for silencing unintegrated HIV-1. SLF2 recruits the SMC5/6 complex to unintegrated lentiviruses, and depletion of SLF2, or the SMC5/6 complex, increases viral expression. ATAC-seq demonstrates that Vpr-mediated SLF2 depletion increases chromatin accessibility of unintegrated virus, suggesting that the SMC5/6 complex compacts viral chromatin to silence gene expression. This work implicates the SMC5/6 complex in nuclear immunosurveillance of extrachromosomal DNA and defines its targeting by Vpr as an evolutionarily conserved antagonism.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Integração Viral , Replicação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
13.
Virol J ; 18(1): 48, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648539

RESUMO

BACKGROUND: Vpr is a virion-associated protein that is encoded by lentiviruses and serves to counteract intrinsic immunity factors that restrict infection. HIV-1 Vpr mediates proteasome-dependent degradation of several DNA repair/modification proteins. Mechanistically, Vpr directly recruits cellular targets onto DCAF1, a substrate receptor of Cullin 4 RING E3 ubiquitin ligase (CRL4) for poly-ubiquitination. Further, Vpr can mediate poly-ubiquitination of DCAF1-interacting proteins by the CRL4. Because Vpr-mediated degradation of its known targets can not explain the primary cell-cycle arrest phenotype that Vpr expression induces, we surveyed the literature for DNA-repair-associated proteins that interact with the CRL4-DCAF1. One such protein is SIRT7, a deacetylase of histone 3 that belongs to the Sirtuin family and regulates a wide range of cellular processes. We wondered whether Vpr can mediate degradation of SIRT7 via the CRL4-DCAF1. METHODS: HEK293T cells were transfected with cocktails of plasmids expressing DCAF1, DDB1, SIRT7 and Vpr. Ectopic and endogeneous levels of SIRT7 were monitered by immunoblotting and protein-protein interactions were assessed by immunoprecipitation. For in vitro reconstitution assays, recombinant CRL4-DCAF1-Vpr complexes and SIRT7 were prepared and poly-ubiqutination of SIRT7 was monitored with immunoblotting. RESULTS: We demonstrate SIRT7 polyubiquitination and degradation upon Vpr expression. Specifically, SIRT7 is shown to interact with the CRL4-DCAF1 complex, and expression of Vpr in HEK293T cells results in SIRT7 degradation, which is partially rescued by CRL inhibitor MNL4924 and proteasome inhibitor MG132. Further, in vitro reconstitution assays show that Vpr induces poly-ubiquitination of SIRT7 by the CRL4-DCAF1. Importantly, we find that Vpr from several different HIV-1 strains, but not HIV-2 strains, mediates SIRT7 poly-ubiquitination in the reconstitution assay and degradation in cells. Finally, we show that SIRT7 degradation by Vpr is independent of the known, distinctive phenotype of Vpr-induced cell cycle arrest at the G2 phase, CONCLUSIONS: Targeting histone deacetylase SIRT7 for degradation is a conserved feature of HIV-1 Vpr. Altogether, our findings reveal that HIV-1 Vpr mediates down-regulation of SIRT7 by a mechanism that does not involve novel target recruitment to the CRL4-DCAF1 but instead involves regulation of the E3 ligase activity.


Assuntos
Proteínas Serina-Treonina Quinases , Receptores de Interleucina-17 , Sirtuínas , Ubiquitina-Proteína Ligases , Produtos do Gene vpr do Vírus da Imunodeficiência Humana , Células HEK293 , HIV-1 , Humanos , Ubiquitina-Proteína Ligases/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
14.
PLoS Pathog ; 17(2): e1009364, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33635925

RESUMO

Previously, we reported that cellular transcription factor ZASC1 facilitates DNA-dependent/RNA-independent recruitment of HIV-1 TAT and the cellular elongation factor P-TEFb to the HIV-1 promoter and is a critical factor in regulating HIV-1 transcriptional elongation (PLoS Path e1003712). Here we report that cellular transcription factor ZBTB2 is a novel repressor of HIV-1 gene expression. ZBTB2 strongly co-immunoprecipitated with ZASC1 and was dramatically relocalized by ZASC1 from the cytoplasm to the nucleus. Mutations abolishing ZASC1/ZBTB2 interaction prevented ZBTB2 nuclear relocalization. We show that ZBTB2-induced repression depends on interaction of cellular histone deacetylases (HDACs) with the ZBTB2 POZ domain. Further, ZASC1 interaction specifically recruited ZBTB2 to the HIV-1 promoter, resulting in histone deacetylation and transcription repression. Depleting ZBTB2 by siRNA knockdown or CRISPR/CAS9 knockout in T cell lines enhanced transcription from HIV-1 vectors lacking Vpr, but not from these vectors expressing Vpr. Since HIV-1 Vpr activates the viral LTR by inducing the ATR kinase/DNA damage response pathway, we investigated ZBTB2 response to Vpr and DNA damaging agents. Expressing Vpr or stimulating the ATR pathway with DNA damaging agents impaired ZASC1's ability to localize ZBTB2 to the nucleus. Moreover, the effects of DNA damaging agents and Vpr on ZBTB2 localization could be blocked by ATR kinase inhibitors. Critically, Vpr and DNA damaging agents decreased ZBTB2 binding to the HIV-1 promoter and increased promoter histone acetylation. Thus, ZBTB2 is recruited to the HIV-1 promoter by ZASC1 and represses transcription, but ATR pathway activation leads to ZBTB2 removal from the promoter, cytoplasmic sequestration and activation of viral transcription. Together, our data show that ZASC1/ZBTB2 integrate the functions of TAT and Vpr to maximize HIV-1 gene expression.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Infecções por HIV/genética , HIV-1/genética , Proteínas Repressoras/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Acetilação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Infecções por HIV/virologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Regiões Promotoras Genéticas , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transcrição Gênica , Replicação Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
15.
J Neurovirol ; 27(1): 137-144, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462790

RESUMO

HIV-1 viral proteins have been implicated in endothelial dysfunction, which is a major determinant of ischaemic stroke risk in HIV-infected individuals. Polymorphisms in HIV-1 viral protein R (Vpr) may alter its potential to promote endothelial dysfunction, by modifying its effects on viral replication, reactivation of latent cells, upregulation of pro-inflammatory cytokines and infection of macrophages. We analysed Vpr polymorphisms and their association with acute ischaemic stroke by comparing Vpr signature amino acids between 54 HIV-infected individuals with acute ischaemic stroke, and 80 age-matched HIV-infected non-stroke controls. Isoleucine at position 22 and serine at position 41 were associated with ischaemic stroke in HIV. Individuals with stroke had lower CD4 counts and CD4 nadirs than controls. These polymorphisms are unique to individuals with stroke compared to South African subtype C and the control group consensus sequences. Signature Vpr polymorphisms are associated with acute ischaemic stroke in HIV. These may increase stroke risk by promoting endothelial dysfunction and susceptibility to opportunistic infections. Therapeutic targeting of HIV-1 viral proteins may present an additional mechanism of decreasing stroke risk in HIV-infected individuals.


Assuntos
Infecções por HIV/complicações , AVC Isquêmico/virologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Adulto , Estudos de Casos e Controles , Feminino , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
16.
mBio ; 11(4)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753492

RESUMO

The DNA damage response (DDR) is a signaling cascade that is vital to ensuring the fidelity of the host genome in the presence of genotoxic stress. Growing evidence has emphasized the importance of both activation and repression of the host DDR by diverse DNA and RNA viruses. Previous work has shown that HIV-1 is also capable of engaging the host DDR, primarily through the conserved accessory protein Vpr. However, the extent of this engagement has remained unclear. Here, we show that HIV-1 and HIV-2 Vpr directly induce DNA damage and stall DNA replication, leading to the activation of several markers of double- and single-strand DNA breaks. Despite causing damage and activating the DDR, we found that Vpr represses the repair of double-strand breaks (DSB) by inhibiting homologous recombination (HR) and nonhomologous end joining (NHEJ). Mutational analyses of Vpr revealed that DNA damage and DDR activation are independent from repression of HR and Vpr-mediated cell cycle arrest. Moreover, we show that repression of HR does not require cell cycle arrest but instead may precede this long-standing enigmatic Vpr phenotype. Together, our data uncover that Vpr globally modulates the host DDR at at least two independent steps, offering novel insight into the primary functions of lentiviral Vpr and the roles of the DNA damage response in lentiviral replication.IMPORTANCE The DNA damage response (DDR) is a signaling cascade that safeguards the genome from genotoxic agents, including human pathogens. However, the DDR has also been utilized by many pathogens, such as human immunodeficiency virus (HIV), to enhance infection. To properly treat HIV-positive individuals, we must understand how the virus usurps our own cellular processes. Here, we have found that an important yet poorly understood gene in HIV, Vpr, targets the DDR at two unique steps: it causes damage and activates DDR signaling, and it represses the ability of cells to repair this damage, which we hypothesize is central to the primary function of Vpr. In clarifying these important functions of Vpr, our work highlights the multiple ways human pathogens engage the DDR and further suggests that modulation of the DDR is a novel way to help in the fight against HIV.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Linhagem Celular Tumoral , Células HEK293 , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , HIV-2/genética , HIV-2/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Osteossarcoma , Replicação Viral
17.
J Transl Med ; 18(1): 310, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778120

RESUMO

BACKGROUND: HIV-1 Vpr encodes a 14 kDa protein that has been implicated in viral pathogenesis through modulation of several host cell functions. In addition to pro-apoptotic and cytostatic properties, Vpr can redirect cellular E3 ubiquitin ligases (such as DCAF1-Cul4A E3 ligase complex) to target many host proteins and interfere with their functions. Among them, Vpr binds the uracil DNA glycosylase UNG2, which controls genome uracilation, and induces its specific degradation leading to loss of uracil removal activity in infected cells. Considering the essential role of UNG2 in antibody diversification in B-cells, we evaluated the impact of Vpr on UNG2 fate in B lymphocytes and examined the functional consequences of UNG2 modulations on class switch recombination (CSR). METHODS: The impact of Vpr-induced UNG2 deregulation on CSR proficiency was evaluated by using virus-like particles able to deliver Vpr protein to target cells including the murine model CSR B cell line CH12F3 and mouse primary B-cells. Co-culture experiments were used to re-examine the ability of Vpr to be released by HIV-1 infected cells and to effectively accumulate in bystander B-cells. Vpr-mediated UNG2 modulations were monitored by following UNG2 protein abundance and uracil removal enzymatic activity. RESULTS: In this study we report the ability of Vpr to reduce immunoglobulin class switch recombination (CSR) in immortalized and primary mouse B-cells through the degradation of UNG2. We also emphasize that Vpr is released by producing cells and penetrates bystander B lymphocytes. CONCLUSIONS: This work therefore opens up new perspectives to study alterations of the B-cell response by using Vpr as a specific CSR blocking tool. Moreover, our results raise the question of whether extracellular HIV-1 Vpr detected in some patients may manipulate the antibody diversification process that engineers an adapted response against pathogenic intruders and thereby contribute to the intrinsic B-cell humoral defect reported in infected patients.


Assuntos
HIV-1 , Animais , Linfócitos B/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Reparo do DNA , Humanos , Camundongos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
18.
Biochem Pharmacol ; 180: 114128, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619426

RESUMO

Back in 1989 some studies have shown that the viral protein Vpr was dispensable for HIV-1 replication in vitro. From then the concept of accessory or auxiliary protein for Vpr has emerged and it is still used to date. However, Vpr soon appeared to be very important for in vivo virus spread and pathogenesis. Vpr has been involved in many biological functions including regulation of reverse transcriptase activity, the nuclear import of the pre-integration complex (PIC), HIV-1 transcription, gene splicing, apoptosis and in cell cycle arrest. Thus, we might rather consider Vpr as a true virulence factor instead of just an accessory factor. At present, Vpr can be regarded as a potential and promising target in different strategies aiming to fight infected cells including latently infected cells.


Assuntos
Polimorfismo Genético , Transcrição Gênica , Fatores de Virulência/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Sequência de Aminoácidos , Apoptose/genética , Ciclo Celular/genética , Progressão da Doença , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Mutagênese Sítio-Dirigida , Linfócitos T/imunologia , Linfócitos T/patologia , Linfócitos T/virologia , Fatores de Virulência/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia
19.
J Gen Virol ; 101(9): 997-1007, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553018

RESUMO

The Vpx and Vpr proteins of human immunodeficiency virus type 2 (HIV-2) are important for virus replication. Although these proteins are homologous, Vpx is expressed at much higher levels than Vpr. Previous studies demonstrated that this difference results from the presence of an HHCC zinc-binding site in Vpx that is absent in Vpr. Vpx has another unique region, a poly-proline motif (PPM) of seven consecutive prolines at the C-terminus. Using PPM point mutants of Vpx, this study demonstrated that these seven consecutive prolines are critical for suppressing proteasome degradation of Vpx in the absence of Gag. Both the PPM and the zinc-binding site stabilize Vpx but do so via different mechanisms. PPM and zinc-binding site mutants overexpressed in Escherichia coli aggregated readily, indicating that these motifs normally prevent exposure of the hydrophobic region outside the structure. Furthermore, introduction of the zinc-binding site and the PPM into Vpr increased the level of Vpr expression so that it was as high as that of Vpx. Intriguingly, HIV-2 has evolved to express Vpx at high levels and Vpr at low levels based on the presence and absence of these two motifs with distinct roles.


Assuntos
Motivos de Aminoácidos , HIV-2/fisiologia , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Células HEK293 , HIV-2/genética , Células HeLa , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos , Mutação Puntual , Prolina/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Virais Reguladoras e Acessórias/genética , Zinco/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
20.
Elife ; 92020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538781

RESUMO

The HIV-1 Vpr accessory protein induces ubiquitin/proteasome-dependent degradation of many cellular proteins by recruiting them to a cullin4A-DDB1-DCAF1 complex. In so doing, Vpr enhances HIV-1 gene expression and induces (G2/M) cell cycle arrest. However, the identities of Vpr target proteins through which these biological effects are exerted are unknown. We show that a chromosome periphery protein, CCDC137/cPERP-B, is targeted for depletion by HIV-1 Vpr, in a cullin4A-DDB1-DCAF1 dependent manner. CCDC137 depletion caused G2/M cellcycle arrest, while Vpr-resistant CCDC137 mutants conferred resistance to Vpr-induced G2/M arrest. CCDC137 depletion also recapitulated the ability of Vpr to enhance HIV-1 gene expression, particularly in macrophages. Our findings indicate that Vpr promotes cell-cycle arrest and HIV-1 gene expression through depletion of CCDC137.


Like all viruses, the human immunodeficiency virus 1 (HIV-1) cannot replicate on its own; to multiply, it needs to exploit the molecular machinery of a cell. A set of HIV-1 proteins is vital in this hijacking process, and they are required for the virus to make more of itself. However, HIV-1 also carries accessory proteins that are not absolutely necessary for the replication process, but which boost the growth of the virus by deactivating the defences of the infected cells. Amongst these proteins, the role of Viral Protein R (Vpr for short) has been particularly enigmatic. Previous experiments have shown that, in infected cells, Vpr is linked to several biological processes: it tags for destruction a large number of proteins, it causes the cells to stop dividing, and it encourages them to express the genetic information of the virus. How these different processes are connected and triggered by Vpr is still unknown. It particular, it remains unclear which protein is responsible for these changes when it is destroyed by Vpr. To investigate, Zhang and Bieniasz conducted a series of experiments to spot the proteins that interact with Vpr in human cells. This screening process highlighted a protein known as CCDC137, which is depleted in cells infected by HIV-1. To investigate the role of CCDC137, Zhang and Bieniasz decreased the levels of the protein in human cells. This stopped the cells from dividing, just like during HIV-1 infection. Destroying CCDC137 also mimicked the effects of Vpr on HIV-1 gene expression, increasing the levels of virus proteins in infected cells. Finally, Zhang and Bieniasz made a mutant version of CCDC137 that Vpr could not destroy. When infected cells carried this mutant protein, they kept on dividing as normal. Taken together, these results suggest that Vpr works by triggering the destruction of the CCDC137 protein. Overall, this work represents the first step to understand the role of CCDC137 in both infected and healthy cells.


Assuntos
Pontos de Checagem do Ciclo Celular , Regulação Viral da Expressão Gênica/genética , HIV-1/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Western Blotting , Linhagem Celular , Dano ao DNA , HIV-1/fisiologia , Humanos , Imunoprecipitação , Hibridização in Situ Fluorescente , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas Repressoras , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...